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Chapter 1

Introduction

Mathematics is an important branch of scientific knowledge which has a lot of

applications for humanity and in every sphere of life. Mathematics is further di-

vided into many branches which have their own significance according to their

applications. One of the important branch of mathematics is named as functional

analysis, which has a lot of applications in different areas, such as it has a wide

applicability in solving the problems like linear and non-linear partial differential

equations. It has numerous applications in the field of numerical analysis, error

estimation of polynomial interpolation and finite difference method. Combination

of analysis and geometry is the important and beautiful outcome in the form of

functional analysis.

In the functional analysis, fixed point theory is an important and valueable con-

cept. This certainly enhance the importance and significance of functional analysis

due to its wide use in solving the different types of linear and non-linear problems.

The concept of fixed point has a lot of applications in various fields of science,

such as mathematical economics, game theory, optimization theory, approxima-

tion theory and in variational inequalities etc.

The first person who had worked on fixed point theory was Poincare [34] in 1886.

Afterward, the equation f(a) = a was taken into consideration by Brouwer [12]

and he found solution of this equation by proving a fixed point theorem, in 1912.

He also contributed to prove fixed point results for the shapes like a square and

a sphere etc. Kuktani [25] extended and generalized further this work for n-

dimensional counter parts of a sphere and a square.

In the same time, an important concept was appeared in the field of fixed point

theory that is, Banach contraction named as Banach Contraction Principle. Which

1



Chapter 1 2

played very important role in solving non-linear problems. This famous and well

known result was introduced by Banach [9], in 1922. He proved that every con-

traction mapping on a complete metric space always has a unique fixed point.

We can observe that the successive approximation method for finding the existence

and uniqueness of solution of differential equations is infact the start and origin

of contraction principle and fixed point theory. Picard introduced the iterative

process that was used in the proof of Banach Contraction theorem.

Due to importance and wide application of Banach Contraction Principle the ex-

istence of fixed point and its uniqueness has become very common and intresting

phenomena for authors. Kannan [26] further worked on it and developed some

new results in this field. Many authors worked on different generalized metric

spaces and proved Banach Contraction Principle using different contractions. The

work in this direction is further divided into two categories. In the first category,

the fixed point theorems are obtained by extending the contraction conditions and

hence generalizing the Banach Contraction Principle. In the second category, re-

searchers established fixed point theorems for more general from abstract spaces.

The extensions in this field are very vast and here it is not possible to discuss all

of these generalizations but we shortly discuss only some of these.

Generalization of metric space named as Partial metric space was introduced by

Matthews [28] in 1994. He proved Banach Contraction results on this space. Other

authors who extended work on partial metric space are in [4], [5], [31], [32]. In

2007, Huang [23] introduced another space known as Cone Metric Space. In this

space many fixed point results are proved by different authors in, e.g. [35] and

[43].

In 1989, the concept of b-metric was introduced by Bakhtin [8] first time. Due to

its importance, b-metric space is used for generalizing contraction mapping and for

proving some new results. Czerwik [16] established different results for b-metric

space. These results was further extended and generalized in single and multi-

valued mappings for differnt purposes. In b-metric space Khamsi and Hussain [24]

proved some new results.

The concept of rectangular metric space was introduced by Branciari [11]. He

changed the third axiom of metric space and proved different fixed point results

in this space. After this, many authors worked in this space using different con-

tractions see [[6],[7],[13],[17],[21]].

A lot of contraction conditions have been established after the Banach Contraction

Principle, but we discuss only those which are used in our work.
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The concept of a new contraction mapping known as F -contraction was intro-

duced by Wardowski [46], in 2012. He gave some new fixed point results and

proved these results for such type of contraction. He produced these results in

as a different way rather than traditional ways as done by many authors. After

this, fixed point results for F -contraction were produced by Secelean [37] using

iterated function. Later on, Piri et. al.[33] generalized the fixed point theorey of

Wardwoski for F -suzuki contraction by making the condition of a complete metric

space. Further, Abbas [1] extended the work of Wardwoski and established some

new fixed point theorems using F -contraction mapping. Batra et al.[10] worked

on proving Fixed point theorems and also contributed in explaining graphs using

the idea of F -contraction. He also discussed altered distance. In complete metric

space, Cosentino et al. proved some new results for self contraction mappings. On

complete metric space and copmlete ordered metric space Vetro [45] proved some

important results of fixed point using F -contraction.

In this dissertation, we review the paper of Hossein Piri and Poom Kuman [33]. we

extend the results presented in [33] in the setting of b-metric spaces. we obtained

new fixed point theorems in b-metric spaces for new contractive conditions like

F -contraction and F -Suzuki contraction.

Following are the details of work, which I have done throughout this dissertation.

• In Chapter 2, we throw light on basic concepts and definitions of Metric

spaces, F -contraction in complete metric space and presented few examples.

• In Chapter 3, the paper “Some Fixed point theorem concerning F -

contraction in complete metric spaces” [33] is reviewed comprehen-

sively.

• In Chapter 4, we focused on the generalization of the theorem which is

reviewed in chapter 3. A brief conclusion of our work is also presented in

this chapter.



Chapter 2

Preliminaries

Throughout in this work we use the notations of R, R+ and N for set of real

numbers, set of the all positive real numbers and set of all natural numbers re-

spectively.

In this chapter we will review the basic definitions and some examples of various

abstract spaces which are related to our research.

2.1 Metric space

We start with the more general concept of “distance” between two elements of a

set. That is, the notion of a metric.

Definition 2.1.1. (Metric Space)

“Let X be a nonempty set. A Mapping d : X ×X → R is said to be metric on X

if it satisfies the following conditions:

M1 - d(x, y) ≥ 0 ∀ x, y ∈ X (Non negative)

M2 - d(x, y) = 0 iff x = 0

M3 - d(x, y) = d(y, x) ∀ x, y ∈ X (Symmetry)

M4 - d(x, z) ≤ d(x, y) + d(y, z) ∀ x, y, z ∈ X (Triangular property)

The pair (X, d) is called metric space”.

4
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We clear the above definition with the following examples of metric spaces.

1. Usual Metric Space:

Let X = R and define,

d : X ×X → R

as

d(x, y) = |x− y|

then (R, d) is a metric space and d is called usual metric on R.

2. Euclidean Plane:

Let X = R2, define

d : R2 × R2 → R

by

d(x, y) = [(x1 − y1)2 + (x2 − y2)]1/2

Then d is a metric on R2 and (R2, d) is a metric space.

3. Space of Bounded Sequences(`∞):

Let X be the set of all bounded sequences of complex numbers,

i.e.,

x = {xn}n∈N or x = (x1, x2, · · · )

and |xn| ≤ cx ∀ n ∈ N.

Define d : X ×X → R by

d(x, y) = sup
n∈N
|xn − yn|

Where x, y ∈ X, x = xn, y = yn and sup denotes the supremum (least upper

bound). This space is denoted by `∞ and is called sequence space.

x ∈ `∞ ⇒ sup
n∈N
|xn| <∞.

4. Function Space (C[a, b]):

Let X = C[a, b] be the set of all real-valued continuous functions defined on
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a closed interval [a, b]. The function d : X ×X → R given by

d(x, y) = max
t∈[a,b]

|f(t)− g(t)| x, y ∈ C[a, b]

is a metric on X and (X, d) is a metric space denoted by C[a, b].

5. The space of bounded functions (B(A)):

Let X = B(A) be the set of all bounded functions defined on the set A then

d : B(A)×B(A)→ R given by

d(x, y) = sup
t∈A
|x(t)− y(t)|

is a metric on B(A). For a set A = [a, b] ⊆ R; B(A) is denoted as B[a, b]

6. Space (`p):

The space of real or complex number sequences x = {xn}∞n=1 such that for

some p ≥ 1 the infinite series
∞∑
n=1

|xn|p

Converges. The space is denoted by lp

The metric d : `p × `p → R is given by:

d(x, y) =

( ∞∑
n=1

|xn − yn|p
)1/p

∀ x, y ∈ `p

i.e., both
∑
|xn|p,

∑
|yn|p <∞.

For p = 2, we get the Hilbert sequence space `2 with metric given by

d(x, y) =

√√√√ ∞∑
n=1

|xn − yn|2 ∀ x, y ∈ `2

The following definitions are taken from [27].

Definition 2.1.2. (Continuous Mapping)

“Let (X, d) be a metric space. A mapping T : X → X is said to be continuous at

a point x0 if for each ε > 0, ∃ δ > 0, such that

d(Tx, Tx0) ≤ ε
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whenever,

d(x, x0) < δ”

Example 2.1.3.

Let us consider a mapping f : X → X defined on a usual metric space (R, d) as

follows

T (a) = a3 a ∈ X

Then f is continuous mapping.

Definition 2.1.4. (Convergence of Sequence)

A sequence {an} in a metric space (X, d) is said to be convergent to a point, a ∈ X
if

lim
n→∞

d(an, a) = 0

Alternatively; by an → a we mean, ∀ ε > 0 there exist a natural number N = N(ε)

such that,

d(an, a) < ε ∀ n > N

Definition 2.1.5. (Cauchy Sequence)

“A sequence {xn} in a metric space (X, d) is said to be Cauchy sequence if for

every ε > 0 there exist a positive number N = N(ε) such that

d(xn, xm) < ε ∀ m,n > N”

Definition 2.1.6. (Complete Metric Space)

“If every Cauchy sequence in a metric space (X, d) converges to a point x ∈ X

then X is called complete metric space”.

Definition 2.1.7. (Compact Metric Space)

“A metric space X is called compact if every sequence in X has a convergent

sub-sequence”.

2.2 b-metric space

Definition 2.2.1.

Let X be a non-empty set. A real-valued mapping db : X ×X → R that satisfies

the following conditions :
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1. db(a, b) ≥ 0 and db(a, b) = 0⇔ a = b ∀ a, b ∈ X

2. db(a, b) = d(a, b) ∀ a, b ∈ X (symmetry)

3. There exist a real number b ≥ 1, such that :

db(a, c) ≤ b [db(a, b) + db(b, c)] ∀ a, b, c ∈ X

is called b-metric on X. The pair (X, db) is called b-metric space with coef-

ficient b.

We illustrate the above definition with the following examples of b−metric spaces.

Example 2.2.2.

Let (X, d) be a metric space . Then for a real number m > 1, we define a function

d1(a, b) = (d(a, b))m, then d1 is a b-metric with b = 2m−1.

Proof.

It is very easy to verify first two conditions. We only prove third condition.

Define f(x) = xm for x > 0,(
a+ b

2

)m
≤ am + bm

2

(a+ b)m

2m
≤ am + bm

2

(a+ b)m ≤ 2m−1(am + bm)

So for a, b, c ∈ X, we have

d1(a, c) = (d(a, c))m ≤ [d(a, b) + d(b, c)]m

≤ 2m−1[d(a, b)m + d(b, c)m]

⇒ d1(a, c) ≤ 2m−1[d1(a, b) + d1(b, c)]

Hence (X, d1) is a b-metric space.

Remark 2.2.3.

A b-metric db need not continuous. This is illustrated by the following example.
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Example 2.2.4.

Let X = N ∪ {∞} and define db : X ×X → {0,+∞} by

db(m,n) =


0 if m = n,

| 1
m −

1
n | if m,n are even or mn =∞,

5 if m and n are odd and m 6= n,

2 otherwise

It can be checked that for all m,n, p ∈ X, we have

db(m, p) ≤
5

2
[db(m,n) + db(n, p)]

Thus (X, db) is a b-metric space with b = 5
2
.

Let xn = 2n for each n ∈ N, then

db(2n,∞) =
1

2n
−→ 0 as n −→∞

that is, xn −→∞, but db(xn, 1) = 2 9 5 = db(∞, 1) as n −→∞.

Definition 2.2.5. (Fixed Point)

Let T : X → X be a mapping on a set X. A point a0 ∈ X is said to be fixed

point of T if

Ta0 = a0

i.e. point is mapped onto itself.

Definition 2.2.6. (Contraction)

Let (X, d) be a metric space. A mapping T : X → X is said to be a contraction

if for a 6= b there exist o ≤ α < 1 such that

d(Ta, Tb) ≤ αd(a, b) ∀ a, b ∈ X

Definition 2.2.7. (Contractive Mapping)

Let (X, d) be a metric space. A mapping T : (X, d)→ (X, d) is called contractive

if for a 6= b

d(Ta, Tb) < d(a, b) ∀ a, b ∈ X



Chapter 2 10

Example 2.2.8.

Consider usual metric space (R, d), i.e.

d(x, y) = |x− y|

Then the function defined as, f : R→ R

f(x) =
x

a
+ b

is a contraction if a > 1 and its fixed point is x = ab
a−1 .

Example 2.2.9.

Consider the Euclidean metric space (R2, d), i.e. f : R2 → R2 defined as

f(x, y) = (
x

a
+ b,

y

c
+ b)

is a contraction for (a, c) > 1 and its fixed point is x = ab
a−1 and y = cd

c−1 .

2.3 Banach Contraction Principle

Banach [9], a polish mathematician have proved a most valueable result

about a contraction mapping, which is also known as Banach contraction prin-

ciple after its kind name, in 1922. In the theory of fixed point concepts, it is

considered as one of the basic and frequently applied result. Many extensions and

generalizations on Banach contraction principle are made by a lot of authors for

taking as it has a wide and simple applications. [for instance see [33],[45],[8],[16]].

Banach contraction principle is as follows: “Every contraction mapped on a com-

plete metric space has a unique fixed point i.e.

If (X, d) is a complete metric space and T : X → X is a mapping such that

∀ a, b ∈ X, ∃ α ∈ [o, 1) such that

d(Ta, Tb) ≤ α d(a, b), a 6= b

Then T has a unique fixed point a0 ∈ X i.e. Ta0 = a0 ” .



Chapter 3

A Review on F -Contraction in

Complete metric Spaces

In this chapter it is our aim to review the concepts regarding the F -contraction

mappings in complete Metric sapces which were considered and defined by War-

dowski [46]. We also like to review the results of fixed point for F -Suzuki contrac-

tions that is the generalization of Wardowski’s work result in F -contraction.

M. Edelstein [20] established some new results as a different version of the the well

known Banach Contraction Principlein in 1962.

We have reviewed the following theorem of Edelstein.

3.1 Contractive mapping on compact metric space:

Theorem 3.1.1.

Let S : X → X be a self-mapping on a compact metric space (X, d). Assume S is

a contractive mapping i.e.,

d(Sa, Sb) < d(a, b) ∀ a, b ∈ X with a 6= b

Then fixed point of S is a unique.

Proof. : Let S : X → [0,∞) be a function defined as a 7→ d(a, Sa). Which

measures the distance between each point and its S-value.

11
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Since X is compact, so the function d(a, Sa) takes on its minimum value, then

there is an p ∈ X such that

d(p, Sp) ≤ d(a, Sa) ∀ a ∈ X.

We will show by contraction that s is a fixed point of S.

If Sp 6= p then according to the given condition (Taking a = p and a′ = Sp)

d(Sp), S(Sp) < d(p, Sp).

Which is contradiction because d(p, Sp) is minimum among all numbers d(a, Sp).

So our supposition is wrong. Therefore Sp = p.

Hence existence of unique point is proved.

Uniqueness:

Now our desire is to prove that S has exactly one fixed point.

Suppose S has two fixed points Sp = p 6= p′ = (Sp′), then

d(s, s′) = d(Ss, Ss′) < d(s, s′)

This is impossible, so s = s′

Hence S has a unique fixed point.

Let us consider some basic concept and theorem about the following F -contraction:

3.2 F -contraction:

In 2012, Wardowski [46] gave the concept of a new type of contraction known as

F -contraction and he proved some new results about the fixed point theorem using

F -contraction.

Wardowski generalized the Banach contraction principle in some different way and

he defined the F -contraction in [33] as follows:

Definition 3.2.1.

“Let (X, d) be a metric space. A mapping T : X → X is said to be an F -

contraction if there exist τ > 0 such that d(Tx, Ty) > 0

⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),∀ x, y ∈ X (3.1)
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where F : R+ → R is a mapping satisfying the following conditions

(F1): F is strictly increasing that is ∀ x, y ∈ R+ such that for x < y , F (x) < F (y)

(F2): For each sequence {αn}∞n=1 of positive numbers, limn→∞ αn = 0 ⇔ limk→∞ F (αn) =

−∞

(F3): There exist k ∈ (0, 1) such that limα→0+ α
kF (α) = 0”

Symbol F is used for a set containing all those functions that satisfy (F1), (F2)

and (F3).

Remark 3.2.2.

From (F1) and (3.1) we can conclude that every F -contraction is necessarily con-

tinuous.

Wardowski stated a modified version of the Banach contraction principle as follows

Theorem 3.2.3.

Let S : X → X be an F -contraction on a complete metric space (X, d). Then for

every a ∈ X the sequence {Sn}n∈N converges to a point a0 and fixed point of S is

unique.

Proof.

For the purpose to prove that S has a fixed point. Let us consider that an arbi-

trary point a0 ∈ X is fixed point of S. Take a sequence {an}n∈N ⊂ X as

an+1 = San , n = 0, 1, 2, ....

Let us consider,

αn = d(an+1, an) , n = 0, 1, 2...

If there exist n0 ∈ N for which an0+1 = an0 then

San0 = an0

and the theorem is proved.

Now suppose that an+1 6= an for every n ∈ N .

Then αn > 0 ∀ n ∈ N .
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Now using (3.1), we see that

µ+ F (d(San+1, San)) ≤ F (d(an+1, an)

≤ F (d(an+1, an))− µ

= F (d(San, San−1))− µ

≤ F (d(an, an−1))− 2µ

= F (d(San−1, San−2))− 2µ

≤ F (d(an−1, an−2))− 3µ

...

≤ F (d(a1, a0))− nµ

(3.2)

So we have,

F (αn) ≤ F (αn−1)− µ ≤ F (αn−2)− 2µ ≤ ....... ≤ F (α0)− nµ (3.3)

Taking limit when n→∞, we get

lim
n→∞

F (αn) = −∞

Using (F2) we get,

lim
n→∞

αn = 0 (3.4)

According to condition (F3) there must exist k ∈ (0, 1) such that

lim
n→∞

αknF (αn) = 0 (3.5)

Multiplying (3.3) throughout by αkn, we get

αknF (αn)− αknF (α0) ≤ αkn(F (α0)− nµ)− αknF (α0) = −αknnµ ≤ 0 (3.6)

Taking n→∞ and using (3.2) and (3.3), we get

lim
n→∞

nαkn = 0 (3.7)

Now from (3.7), we observe that there exist n1 ∈ N such that

nαkn ≤ 1 ∀ n ≥ n1
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and consequently we have

αn ≤
1

n
1
k

∀ n ≥ n1 (3.8)

Now we will prove that {an}n∈N is a Cauchy sequence.

Let us consider p, q ∈ N such that p ≥ q ≥ n1

then from the definition of the metric and from (3.8) we get

d(xp, xq) ≤ αp−1 + αp−2 + .......+ αq <
∞∑
n=1

αn ≤
∞∑
n=1

1

n
1
k

(3.9)

From the convergence of the series
∑∞

n=1
1

n
1
k

, it is clear that {an}n∈N is a Cauchy

sequence.

As X is complete then there exist a0 ∈ X such that limn→∞ an = a0.

From continuity of S, we get

d(Sa0, a0) = lim
n→∞

d(San, an) = lim
n→∞

d(an+1, an) = 0 (3.10)

Which implies that,

Sa0 = a0

That is, a0 is fixed point of S.

Uniqueness:

Suppose a1, a2 be two fixed points in X then, Sa1 = a1 6= a2 = Sa2

then by definition of F -contraction we get

µ ≤ F (d(a1, a2))− F (d(Sa1, Sa2)) = 0 (3.11)

Which is contradiction because µ > 0, so our supposition is wrong.

Hence S has a unique fixed point.

Lemma 3.2.4. [37]

If {tk}∞k=1 is a bounded sequence of real numbers such that all its convergent

sub-sequences have the same limit l, then {tk}∞k=1 is convergent and limk→∞ tk = l

Lemma 3.2.5.

Let an increasing mapping F : R+ → R and a sequence of positive real numbers

{tk}∞k=1. Then the following hold:

1. If limk→∞ F (tk) = −∞, then limk→∞ tk = 0;
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2. If inf F = −∞ and limk→∞ tk = 0, then limk→∞ F (tk) = −∞.

Proof. :

(1) First of all, we observe that {tk}∞k=1 is bounded.

Indeed if sequence is unbounded above, then we can find a sub-sequence {tk(p)}∞p=1

such that limk→∞ tk(p) =∞.

Then for every ε > 0, there is p(ε) ∈ N such that tk(p) ≥ ε for any p ≥ p(ε).

So by (F1),

F (ε) ≤ F (tk(p))

i.e,

F (ε) ≤ lim
p→∞

F (tk(p)) = −∞

Which is a contradiction.

Therefore {tk}∞k=1 is bounded, hence it has a convergent sub-sequence.

Let {tk(n)}∞n=1 be such a sub-sequence and limn→∞ tk(n) = α, where α ≥ 0

Now choose ε > 0 and ε < α. Then there exist n(ε) ∈ N such that

tk(n) ∈ (α− ε, α + ε) ∀ n ≥ n(ε)

As F is increasing therefore,

F (α− ε) ≤ lim
n→∞

F (tk(n)) = −∞.

Which contradicts that F (α− ε) is an element of R.

As limn→∞ tk(n) = 0. Then from Lemma 3.2.4 it follows that

lim
k→∞

tk = 0

Now we prove condition (2)

Assume that inf F = −∞ and limk→∞ tk = 0.

Now, choose ε > 0 and α > 0 such that F (α) < −ε
Then there exist kα ∈ N such that tk < α, ∀ k ≥ kα

So,

F (tk) < F (α) < −ε ∀ k ≥ kα.

Thus,

limk→∞ F (tk) = −∞
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After proving Lemma 3.2.5, Secelean [37] replaced condition (F2) in definition of

F -contraction by an equivalent condition,

(F2′) inf F = −∞
Also, (F2′′) there exist a sequence of positive numbers {tk}∞k=1 such that

lim
k→∞

F (tk) = −∞

Here instead of condition (F3) in definition of F -contraction we use (F3′) as follows

(F3′) F is continuous on (0,∞).

A set containing all those functions in which conditions (F1), (F2′) and (F3′) are

satisfied is usually denoted by the symbol =

Example 3.2.6.

Let, F1(β) = − 1
β

then

1. (F1) is satisfied because for every β1 < β2, F (β1) < F (β2)

2. (F2′) is satisfied because inf F = −∞

3 (F3′) also satisfied because F1(β) is continuous on (0,∞)

Similarly, if

F2β) = − 1

β
+ β, F3(β) =

1

eβ + e−β
, F4(β) =

1

e−β

Then F1, F2, F3 and F4 ∈ =

Remark 3.2.7.

Note that if,

F (β) =
−1

βn

then, (F1), (F2) and (F3′) conditions are satisfied for n ≥ 1. But (F3) is not

satisfied here.

Now If,

F (β) =
−1

(β + [β])n
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then for β > 1 and n ∈ (0, 1
β
), F1 and F2 conditions are satisfied. Also for some

k ∈ ( 1
β
, 1) F3 is satisfied. But (F3′) is not satisfied in this case.

So we can conclude that (F3) and (F3′) does not depend on each other.

Theorem 3.2.8.

Let (X, d) be a complete metric space and S : X → X be a self mapping. If F ∈ =
and there exist µ > 0, such that ∀ a, b ∈ X, d(Sa, Sb) > 0

⇒ µ+ F (d(Sa, Sb)) ≤ F (d(a, b))]

holds. Then the sequence {Ska0}∞k=1 converges to a unique fixed point a∗ of S for

every a0 ∈ X .

Proof.

Let us choose a0 ∈ X and define a sequence {ak}∞k=1 by

a1 = Sa0, a2 = Sa1 = S2a0, ....., ak+1 = Sak = Sk+1a0, ∀ k ∈ N (3.12)

If d(ak, Sak) = 0 for some k ∈ N , then there is nothing to prove.

We consider that,

0 < d(ak, Sak) = d(Sak−1, Sak), ∀ k ∈ N (3.13)

For some k ∈ N, we obtain

µ+ F (d(Sak−1, Sak)) ≤ F (d(ak−1, ak))

F (d(Sak−1, Sak)) ≤ F (d(ak−1, ak))− µ
(3.14)

Continuing the same procedure, we obtain

F (d(Sak−1, Sak)) ≤ F (d(ak−1, ak))− µ

= F (d(Sak−2, Sak−1))− µ

≤ F (d(ak−2, ak−1))− 2µ

= F (d(Sak−3, Sak−2))− 2µ

≤ F (d(ak−3, ak−2))− 3µ

...

≤ F (d(a0, a1))− nµ

(3.15)
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Applying limk→∞ on both the sides obtain,

lim
k→∞

F (d(Sak−1, Sak)) = −∞

Using (F2) we get,

lim
k→∞

d(ak, Sak) = 0 (3.16)

Now, we have to show that {ak}∞k=1 is a Cauchy sequence.

By using contradictory argument, suppose that for a sequences of natural numbers

{b(k)}∞k=1 and {c(k)}∞k=1 there exist δ > 0 such that

b(k) > c(k) > k, d(ab(k), ac(k)) ≥ δ, d(ab(k)−1, ac(k)) < δ, ∀ k ∈ N (3.17)

then, we have

δ ≤ d(ab(k), ac(k)) ≤ d(ab(k), ab(k)−1) + d(ab(k)−1, ac(k))

< d(ab(k), ab(k)−1) + δ

= d(ab(k)−1, Sab(k)−1) + δ

δ ≤ d(ab(k), ac(k)) < d(ab(k)−1, Sab(k)−1) + δ

(3.18)

Letting limk→∞ and using (3.16) in above expression we get

lim
k→∞

d(ab(k), ac(k)) = δ (3.19)

As,

lim
k→∞

d(ak, Sak) = 0

Then there exist N ∈ N, such that

d(ab(k), Sab(k)) <
δ

4
and d(ac(k), Sac(k)) <

δ

4
, ∀ k ≥ N (3.20)

Now, we claim that

d(Sab(k), Sac(k)) = d(ab(k)+1, ac(k)+1) > 0, ∀ k ∈ N (3.21)

By using contradictory argument, there exist l ≥ N for which

d(ab(l)+1, ac(l)+1) = 0 (3.22)
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By combining (3.17),(3.20) and (3.22) we get

δ ≤ d(ab(l), ac(l)) ≤ d(ab(l), ab(l)+1) + d(ab(l)+1, ac(l))

≤ d(ab(l), ab(l)+1) + d(ab(l)+1, ac(l)+1) + d(ac(l)+1, ac(l))

= d(ab(l), Sab(l)) + d(ab(l)+1, ac(l)+1) + d(ac(l), Sac(l))

<
δ

4
+ 0 +

δ

4
=
δ

2

Which is contradiction, so there does not exist such l.

From (3.21) and conditions of the theorem, we get

µ+ F (d(Sab(k), Sac(k))) ≤ F (d(ab(k), ac(k))), ∀ k ∈ N (3.23)

From (F3′), (3.19) and (3.23), we get

µ+ F (δ) ≤ F (δ)

which is contradiction. So our supposition is wrong and hence {ak}∞k=1 is a Cauchy

sequence. As (X, d) is complete metric space then there must exist some a ∈ X
which is convergent point of {ak}∞k=1. As S is continuous then,

d(Sa, a) = lim
k→∞

d(Sak, ak)

= lim
k→∞

d(ak+1, ak)

= d(a∗, a∗)

= 0

This implies S has a unique fixed point.

Uniqueness:

Now we will show that S has exactly one fixed point.

Suppose a1, a2 ∈ X are two different fixed points of S, where a1 6= a2, i.e.

Sa1 = a1 6= a2 = Sa2

Then,

d(Sa1, Sa2) = d(a1, a2) > 0
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which gives,

F (d(a1, a2)) = F (d(Sa1, Sa2))

< µ+ F (d(Sa1, Sa2))

≤ F (d(a1, a2))

which is contradiction. So our supposition of two fixed point is wrong.

Hence S has a unique fixed point.

3.3 F -Suzuki Contraction

Now we discuss fixed point theorem of F -Suzuki contraction. Firstly by defining

F -Suzuki contaction as follows:

Definition 3.3.1.

“ A mapping T : X → X on a metric space (X, d) is called an F -Suzuki contraction

if for all a, b ∈ X and Ta 6= Tb there exist µ > 0, such that

1

2
d(a, Ta) < d(a, b)

⇒ µ+ F (d(Ta, Tb)) ≤ F (d(a, b))

where F mapping denotes F -contraction”.

Theorem 3.3.2.

Let S : X → X be an F -Suzuki contraction on a complete metric space (X, d).

Then S has a unique fixed point and the sequence {Sa0}∞k=1 converge the point

a∗.

Proof.

Let us suppose a0 ∈ X and take a sequence {ak}∞k=1 as

a1 = Sa0, a2 = Sa1 = S2a0, .... ak+1 = Sak = Sk+1a0, ∀ k ∈ N (3.24)

If there exist k ∈ N for which d(ak, Sak) = 0, then there is nothing to prove.

We assume that, 0 < d(ak, Sak), ∀ k ∈ N
Therefore,

1

2
d(an, Sak) < d(ak, Sak) ∀ k ∈ N (3.25)
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For some k ∈ N,

µ+ F (d(Sak, S
2ak)) ≤ F (d(ak, Sak))

i.e.

F (d(ak+1, Sak+1)) ≤ F (d(ak, Sak))− µ

Continuing the same process, we obtain

F (d(ak, Sak)) ≤ F (d(ak−1, Sak−1))− µ

≤ F (d(ak−2, Sak−2))− 2µ

≤ F (d(ak−3, Sak−3))− 3µ

...

≤ F (d(a0, Sa0))− kµ

(3.26)

Taking Limit when n→∞, we obtain

lim
k→∞

F (d(ak, Sak)) = −∞

Using (F2), we get

lim
k→∞

d(ak, Sak) = 0 (3.27)

Now, we have to show that {ak}∞k=1 is a Cauchy sequence.

Contrary suppose that, there exist δ > 0 and sequences of natural numbers

{b(k)}∞k=1 and {c(k)}∞k=1 such that

a(k) > b(k) > k, d(ab(k), ac(k)) ≥ δ, d(ab(k)−1, ac(k)) < δ, ∀ k ∈ N (3.28)

then, we have

δ ≤ d(ab(k), ac(k)) ≤ d(ab(k), ab(k)−1) + d(ab(k)−1, ac(k))

≤ d(ab(k), ab(k)−1) + δ

= d(ab(k)−1, Sab(k)−1) + δ

δ ≤ d(ab(k), ac(k)) ≤ d(ab(k)−1, Sab(k)−1) + δ

(3.29)

Letting limk→∞ and using (3.27) in above expression we get

lim
k→∞

d(ab(k), ac(k)) = δ (3.30)
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Let us choose an integer N ∈ N from (3.27) and (3.30), such that

1

2
d(ab(k), Sab(k)) <

1

2
δ < d(ab(k), ac(k)) ∀ k ≥ N

As S is F -Suzuki type, then we have

µ+ F (d(Sab(k), Sac(k))) ≤ F (d(ab(k), ac(k))) ∀ k ∈ N

Using (3.24), we see that

µ+ F (d(ab(k)+1, ac(k)+1)) ≤ F (d(ab(k), ac(k))) ∀ k ∈ N (3.31)

From (F3′), (3.27) and (3.31), we obtain

µ+ F (δ) ≤ F (δ)

Which is contradiction. This implies {ak}∞k=1 is a Cauchy sequence.

As (X, d) is complete therefore the sequence {ak}∞k=1 converge to a point a∗ ∈ X.

i.e.

lim
k→∞

d(ak, a
∗) = 0 (3.32)

Let us claim that,

1

2
d(ak, Sak) < d(ak, a

∗) and
1

2
d(Sak, S

2ak) < d(Sak, a
∗), ∀ k ∈ N (3.33)

Now suppose that there is some p ∈ N for which

1

2
d(ap, Sap) ≥ d(ap, a

∗) and
1

2
d(Sap, S

2ap) ≥ d(ap, a
∗) (3.34)

Therefore,

2d(ap, a
∗) ≤ d(ap, Sap) ≤ d(ap, a

∗) + d(a∗, Sap)

d(ap, a
∗) + d(ap, a

∗) ≤ d(ap, a
∗) + d(a∗, Sap)

Which implies that,

d(ap, a
∗) ≤ d(a∗, Sap). (3.35)

Using (3.34) and (3.35), we get

d(ap, a
∗) ≤ d(a∗, Sap) ≤

1

2
d(Sap, S

2ap). (3.36)
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Since,
1

2
d(ap, Sap) ≤ d(ap, Sap)

and S is F -Suzuki contraction so, we have

µ+ F (d(Sap, S
2ap)) ≤ F (d(ap, Sap))

So from (F1), we get

d(Sap, S
2ap) < d(ap, Sap) (3.37)

Using (3.34), (3.36) and (3.37), we get

d(Sap, S
2ap) < d(ap, Sap)

≤ d(ap.a
∗) + d(a∗, Sap)

≤ 1

2
d(Sap, S

2ap) +
1

2
d(Sap, S

2ap)

= d(Sap, S
2ap).

(3.38)

Which is contradiction. So, (3.33) holds.

Therefore we can say that, either

µ+ F (d(Sak, Sa
∗)) ≤ F (d(ak, a

∗))

or

µ+ F (d(S2ak, Sa
∗)) ≤ F (d(Sak, a

∗)) = F (d(ak+1, a
∗))

holds for all n ∈ N.

In case first, from (3.32), (F2′) and Lemma (3.2.5), we get

lim
k→∞

F (d(Sak, Sa
∗)) = −∞

Using (F2′) and Lemma(3.2.5), we get

lim
k→∞

d(Sak, Sa∗) = 0

So,

d(a∗, Sa∗) = lim
k→∞

d(ak+2, Sa
∗) = lim

k→∞
d(S2ak, Sa

∗) = 0

Hence a∗ is a fixed pointof S.

Now we prove that S has a unique fixed point.
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Uniqueness:

Let us consider a∗, b∗ ∈ X be two different fixed points of S i.e., a∗ 6= b∗ then

Sa∗ = a∗ 6= b∗ = Sb∗

then,

d(a∗, b∗) > 0

So,

0 =
1

2
d(a∗, Sa∗) < d(a∗, b∗)

According to the definition of F -contraction, we get

F (d(a∗, b∗)) = F (d(Sa∗, Sb∗))

< µ+ F (d(Sa∗, Sb∗))

≤ F (d(a∗, b∗))

(3.39)

Which is contradiction, so our supposition of two fixed point is wrong.

Hence the uniqueness of fixed point of S is proved.

Example 3.3.3.

Let us take a sequence {Tk}k∈N defined by:

T1 = 1× 2, T2 = 1× 2 + 2× 3, . . .

Tk = 1× 2 + 2× 3 + . . .+ k(k + 1) = k(k+1)(k+2)
3

. . .

Let S : X → X be a mapping defined by S(T1) = T1 and S(Tk) = Tk−1 for every

k > 1

where, X = {Tk : k ∈ N} and d(a, b) = |a− b|.
Clearly, (X, d) is complete.

Since,

lim
k→∞

d(S(Tk), S(T1))

d(Tk, T1)
= lim

k→∞

|S(Tk)− S(T1)|
|Tk − T1|

= lim
k→∞

|Tk−1 − T1|
|Tk − T1|

= lim
k→∞

(k−1)k(k+1)
3

− 2
k(k+1)(k+2)

3
− 2

= lim
k→∞

(k − 1)k(k + 1)− 6

k(k + 1)(k + 2)− 6
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= lim
k→∞

k3 − k − 6

k3 + 3k2 + 3k − 6

= lim
k→∞

k3(1− 1
k2
− 6

k3
)

k3(1 + 3
k

+ 3
k2

)

= 1

This is the example of mapping S which is a Suzuki contraction. But here S is

not Banach.

While, if we take F ∈ = such that,

F (γ) = − 1
γ

+ γ,

and by taking µ = 6 then S is F -contraction.

Now we consider the calculation given below.

1

2
d(Tk, STk) < d(Tk, Tp)

⇔ [(1 = k < p) ∨ (1 ≤ p < k) ∨ (1 < k < p)]

Now for (1 = k < p), we have

|S(Tp)− S(T1)| = |Tp−1 − T1|

= 2× 3 + 3× 4 + ....+ (p− 1)p

|Tp − T1| = 2× 3 + 3× 4 + ....+ p(p+ 1)

(3.40)

Since p > 1 and

−1

2× 3 + 3× 4 + . . .+ (p− 1)p
<

−1

2× 3 + 3× 4 + . . .+ p(p+ 1)

then we have,

6− −1

2× 3 + 3× 4 + ....+ (p− 1)p
+ [2× 3 + 3× 4 + ....+ (p− 1)p]

< 6− −1

2× 3 + 3× 4 + ....+ p(p+ 1)
+ [2× 3 + 3× 4 + ....+ (p− 1)p]

≤ −1

2 + 3 + ....+ p
+ [2× 3 + 3× 4 + ....+ (p− 1)p] + p(p+ 1)

=
−1

2 + 3 + ....+ p
+ 2× 3 + 3× 4 + ....+ (p− 1)p+ p(p+ 1)

From (3.40), we get

6− 1

|S(Tp)− S(T1)|
+ |S(Tp)− S(T1)| < −

1

|Tp − T1|
+ |Tp − T1|
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For 1 ≤ p < k, similar to 1 = k < p, we get

6− 1

|S(Tp)− S(T1)|
+ |S(Tp)− S(T1)| < −

1

|Tp − T1|
+ |Tp − T1|

For 1 < k < p, we have

|S(Tp)− S(Tk)| = k(k + 1) + (k + 1)(k + 2) + ...+ (p− 1)P (3.41)

|Tp − Tk| = (k + 1)(k + 2) + (k + 2)(k + 3) + ...+ p(p+ 1) (3.42)

Since p > k > 1, we have

(p+ 1)p ≥ (k + 2)(k + 1) = k(k + 1) + 2(k + 1) ≥ k(k + 1) + 6

We know that,

−1

k(k + 1) + (k + 1)(k + 2) + ...+ (p− 1)p

<
−1

(k + 1)(k + 2) + (k + 2)(k + 3) + ...+ p(p+ 1)

Therefore,

6− 1

k(k + 1) + (k + 1)(k + 2) + ...+ (p− 1)p

+ [k(k + 1) + (k + 1)(k + 2) + ...+ (p− 1)p]

< 6− 1

(k + 1)(k + 2) + (k + 2)(k + 3) + ...+ p(p+ 1)

+ [k(k + 1) + (k + 1)(k + 2) + ...+ (p− 1)p]

= − 1

(k + 1)(k + 2) + (k + 2)(k + 3) + ...+ p(p+ 1)
+ 6 + k(k + 1)

+ [(k + 1)(k + 2) + ...+ (p− 1)p]

≤ − 1

(k + 1)(k + 2) + (k + 2)(k + 3) + ...+ p(p+ 1)

+ p(p+ 1) + [(k + 1)(k + 2) + ...+ (p− 1)p]

= − 1

(k + 1)(k + 2) + (k + 2)(k + 3) + ...+ p(p+ 1)

+ [(k + 1)(k + 2) + ...+ (p− 1)p]
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So From (3.42), we get

6− 1

|S(Tp)− S(Tk)|
+ |S(Tp)− S(Tk)|

< − 1

|Tp − Tk|
+ |Tp − Tk|

Therefore,

µ+ F (d(S(Tp), S(TK))) ≤ d(Tp, Tk) ∀ p, k ∈ N

Hence S is an F -contraction and S(T1) = T1.
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F -contraction and b-metric Spaces

In this chapter it is our aim to set up some new concepts and results using the

F -contraction mappings in complete b-Metric sapces that were considered and

defined by Czerwik [16]. We also extended the fixed point results for b-metric

space using F -Suzuki [41] contractions that is the generalization of the work of

Wardowski’s result in F -contraction.

4.1 F -contraction in b-Metric

We start first by defining F -contraction as follows:

Definition 4.1.1.

“Let (X, db) be a b-metric space. A mapping S : X → X is said to be an F -

contraction if there exist µ > 0 such that ∀ a, b ∈ X

d(Sa, Sb) > 0⇒ µ+ F (d(Sa, Sb)) ≤ F (d(a, b))

Where F : R+ → R is a mapping satisfying the following conditions :

F-1 F is strictly increasing that is ∀a, b ∈ R+ such that a < b , F (a) < F (b)

F-2 for each sequence {αk}∞k=1 of positive numbers, limk→∞ αk = 0 if and only if

limF (αk) = −∞

F-3 There exist n ∈ (0, 1) such that limα→0+ α
nF (α) = 0”

29
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Theorem 4.1.2.

Let (X, db) be a complete b-metric space with continuous b-metric d and b ≥ 1.

Let S : X → X be a self mapping on X. If F ∈ = and there exist µ > 0 such that

for all a, b ∈ X, d(Sa, Sb) > 0

⇒ µ+ F (d(Sa, Sb)) ≤ F (d((a, b)) (4.1)

holds. Then the sequence {Ska0}∞k=1 converges to a unique fixed point a∗ of S for

every a0 ∈ X.

Proof.

We select a0 ∈ X and define a sequence {ak}∞k=1 by

a1 = Sa0, a2 = Sa1 = S2a0, ....., ak+1 = Sak = Sk+1a0, ∀ k ∈ N (4.2)

If d(ak, Sak) = 0 for some k ∈ N, then there is nothing to prove.

So, we suppose that

0 < d(ak, Sak) = d(Sak−1, Sak), ∀ k ∈ N (4.3)

For any k ∈ N, we get

µ+ F (d(Sak−1, Sak)) ≤ F (d(ak−1, ak))

F (d(Sak−1, Sak)) ≤ F (d(ak−1, ak))− µ
(4.4)

In the same way,

F (d(Sak−1, Sak)) ≤ F (d(ak−1, ak))− µ

= F (d(Sak−2, Sak−1))− µ

≤ F (d(ak−2, ak−1))− 2µ

= F (d(Sak−3, Sak−2))− 2µ

≤ F (d(ak−3, ak−2))− 3µ

...

≤ F (d(a0, a1))− nµ

(4.5)
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Applying limk→∞ on both the sides, we get

lim
k→∞

F (d(Sak−1, Sak)) = −∞

Using the condition (F2), we have

lim
k→∞

d(ak, Sak) = 0 (4.6)

By claiming that {ak}∞k=1 is a Cauchy sequence.

In contention, suppose that there exist δ > 0 and sequences of natural numbers

{b(k)}∞k=1 and {c(k)}∞k=1 such that

b(k) > c(k) > k, d(ab(k), ac(k)) ≥ bδ, d(ab(k)−1, ac(k)) < bδ, ∀ k ∈ N, b ≥ 1

(4.7)

then, we have

bδ ≤ d(ab(k), ac(k)) ≤ b[d(ab(k), ab(k)−1) + d(ab(k)−1, ac(k))]

< bd(ab(k), ab(k)−1) + bδ

= bd(ab(k)−1, Sab(k)−1) + bδ

bδ ≤ d(ab(k), ac(k)) < bd(ab(k)−1, Sab(k)−1) + bδ

(4.8)

Letting limk→∞ and using (4.6) in above expression we get,

lim
k→∞

d(ab(k), ac(k)) = bδ (4.9)

As,

lim
k→∞

d(ak, Sak) = 0

then for δ > 0 there exist k ∈ N, such that

d(ab(k), Sab(k)) <
δ

4
and d(ac(k), Sac(k)) <

δ

4
, ∀ k ≥ N (4.10)

By claiming,

d(Sab(k), Sac(k)) = d(ab(k)+1, ac(k)+1) > 0, ∀ k ∈ N (4.11)

In conflict, there exist l ≥ N such that

d(ab(l)+1, ac(l)+1) = 0 (4.12)
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By combining (4.7), (4.10) and (4.12) we get

bδ ≤ d(ab(l), ac(l)) ≤ b[d(ab(l), ab(l)+1) + d(ab(l)+1, ac(l))]

≤ bd(ab(l), ab(l)+1) + bd(ab(l)+1, ac(l)+1) + bd(ac(l)+1, ac(l))

= bd(ab(l), Sab(l)) + bd(ab(l)+1, ac(l)+1) + bd(ac(l), Sac(l))

<
bδ

4
+ 0 +

bδ

4
=
bδ

2

(4.13)

Which is contradiction, so there does not exist such l.

From (4.11) and supposition of the theorem, we get

µ+ F (d(Sab(k), Sac(k))) ≤ F (d(ab(k), ac(k))), ∀ k ∈ N (4.14)

From (F3′), (4.9) and (4.14), we get

µ+ F (δ) ≤ F (δ)

which is contradiction. So our supposition is wrong and hence {ak}∞k=1 is a Cauchy

sequence. As X is complete then according to continuity of S there exist a ∈ X,

such that

d(Sa, a) = lim
k→∞

d(Sak, ak)

= lim
k→∞

d(ak+1, ak)

= d(a∗, a∗)

= 0

This implies S has a unique point.

Uniqueness:

Now we will show that S has exactly one fixed point.

Suppose a1, a2 ∈ X are two different fixed points of S, where a1 6= a2, that is

Sa1 = a1 6= a2 = Sa2

then,

d(Sa1, Sa2) = d(a1, a2) > 0
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that gives,

F (d(a1, a2)) = F (d(Sa1, Sa2))

< µ+ F (d(Sa1, Sa2))

≤ F (d(a1, a2))

(4.15)

which is contradiction. So our supposition of two fixed point is wrong.

Hence S has a unique fixed point.

4.2 F -Suzuki Contraction in b-metric

Theorem 4.2.1.

Let S : X → X be an F -Suzuki contraction on a complete b-metric space (X, d)

with continuous b-metric d and b ≥ 1. Then the sequence {Ska0}∞k=1 converges to

a unique fixed point a∗ of S for every a0 ∈ X.

Proof.

Let us choose a0 ∈ X and take a sequence {ak}∞k=1 as

a1 = Sa0, a2 = Sa1 = S2a0, .... ak+1 = Sak = Sk+1a0, ∀ k ∈ N (4.16)

If there exist k ∈ N for which d(ak, Sak) = 0, then there is nothing to prove.

We assume that,

0 < d(ak, Sak), ∀ k ∈ N (4.17)

Therefore,
1

2b
d(ak, Sak) < d(ak, Sak) ∀ k ∈ N (4.18)

As F is Suzuki type contraction, then we have

µ+ F (d(Sak, S
2ak)) ≤ F (d(ak, Sak)),

F (d(Sak, S
2ak)) ≤ F (d(ak, Sak))− µ

< F (d(ak, Sak))

(4.19)

As F is strictly increasing, then we get

d(ak+1, Sak+1) = d(Sak, S
2ak) < d(ak, Sak) ∀ k ∈ N (4.20)
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This implies {d(ak, Sak)}∞k=1 is decreasing sequence of real numbers bounded from

below. Then {d(ak, Sak)}∞k=1 converges to limit l

lim
k→∞

d(ak, Sak) = l = inf{d(ak, Sak) : k ∈ N} (4.21)

Now we have to show that l = 0. Assume that l > 0, then for every δ > 0 there

exist p ∈ N, such that

d(ap, Sap) < l + δ (4.22)

Using (F1), we get

F (d(ap, Sap)) < F (l + δ) (4.23)

But we have,

1

2b
d(ap, Sap) < d(ap, Sap) (4.24)

As S is F -Suzuki type contraction, then we get

µ+ F (d(Sap, S
2ap)) ≤ F (d(ap, Sap)),

F (d(Sap, S
2ap)) ≤ F (d(ap, Sap))− µ

(4.25)

Similarly,

µ+ F (d(S2ap, S
3ap)) ≤ d(Sap, S

2ap)),

F (d(Sap, S
2ap)) ≤ F (d(ap, Sap))− 2µ

(4.26)

Continuing the same process, we obtain

F (d(Skap, S
k+1ap)) ≤ F (d(Skap, S

k−1ap))− µ

≤ F (d(Sk−1ap, S
k−2ap))− 2µ

...

≤ F (d(Sap, ap))− kµ

< F (l + δ)− kµ

(4.27)

Taking limk→∞, we get

lim
k→∞

F (d(Skap, S
k+1ap)) = −∞ (4.28)
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Using (F2), we get

lim
k→∞

d(Skap, S
k+1ap) = 0

Then there exist N1 ∈ N such that

d(Skap, S
k+1ap) < l, ∀ k ∈ N1 (4.29)

From sequence defined in (4.16), we get

d(ap+k, Sap+k) < l, ∀ k ∈ N1

Which is opposite to the definition of l.

Therefore,

lim
k→∞

d(ak, Sak) = 0 (4.30)

Now we have to show that limk,p→∞ d(ak, ap) = 0

Oppositely, Suppose that there exist δ > 0 and sequences of natural numbers

{b(k)}∞k=1 and {c(k)}∞k=1 such that

a(k) > b(k) > k, d(ab(k), ac(k)) ≥ δ, d(ab(k)−1, ac(k)) < δ, ∀ k ∈ N (4.31)

As X is b-metric space, then for b-coefficient

d(ab(k), ac(k)) ≤ b[d(ab(k), ab(k)−1) + d(ab(k)−1, ac(k))]

< bd(ab(k), ab(k)−1) + bδ

= bd(ab(k)−1, Sab(k)−1) + bδ

(4.32)

As lim→∞ d(ak, Sak) = 0, then there exist N2 ∈ N such that

d(ab(k), Sab(k)) < δ, ∀ k > N2. (4.33)

Using (4.33), (4.32) takes the form

d(ab(k), ac(k)) < 2bδ ∀ k > N2 (4.34)

Using (F2), we get

F (d(ab(k), ac(k))) < F (2bδ) ∀ k > N2 (4.35)
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We can also get,

1

2b
d(ab(k), Sab(k)) <

δ

2b
< δ < d(ab(k), ac(k)) ∀ k > N2

As S is F -Suzuki type contraction, then we get

µ+ F (d(Sab(k), Sac(k))) ≤ F (d(ab(k), ac(k))) ∀ k ∈ N2 (4.36)

Putting (4.35) in (4.36) we get,

µ+ F (d(Sab(k), Sac(k))) < F (2bδ)

Using and (F2), we get

lim
k→∞

F (d(Sab(k), Sac(k))) = −∞

From (F2), we get

lim
k→∞

d(Sab(k), Sac(k)) = 0⇔ lim
k→∞

d(ab(k)+1, ac(k)+1) = 0

Which contradicts (4.31). Hence limk,p→∞ d(ak, ap) = 0 this implies that {ak}∞k=1

is a Cauchy sequence in X.

As (X, d) is complete, then there exist t ∈ X such that

lim
k→∞

d(ak, t) = 0 (4.37)

Now we claim that, for every k ∈ N we have,

1

2b
d(ak, Sak) < d(ak, t) ∀ k ∈ N

1

2b
d(Sak, S

2
k) < d(Sak, t) ∀ k ∈ N

(4.38)

On contrary suppose that, there exists p ∈ N such that

1

2b
d(ap, Sap) ≥ d(ap, t)

or

1

2b
d(Sap, S

2
p) ≥ d(Sap, t)

(4.39)
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Using (F1) and (4.20) we get,

d(Sap, S
2
p) < d(ap, Sap) (4.40)

From (4.39) and (4.40), we get

d(ap, Sap) ≤ bd(ap, t) + bd(t, Sap)

≤ 1

2
d(ap, Sap) +

1

2
d(Sap, S

2
p)

<
1

2
d(ap, Sap) +

1

2
d(ap, Sap)

= d(ap, Sap)

(4.41)

Which contradicts our supposition. This implies (4.38) holds. As S is F -Suzuki

type contraction, then for every k ∈ N (4.38) gives,

µ+ F (d(Sak, St)) ≤ F (d(ak, t)) (4.42)

Taking limk→∞ of (4.30), (4.31) and then applying (F2),we get

lim
k→∞

F (d(ak, t)) = −∞, lim
k→∞

F (d(ak, Sak)) = −∞ (4.43)

lim
k→∞

F (d(Sak, St)) = −∞ (4.44)

Using (F2), we get

lim
k→∞

d(Sak, St)) = 0 (4.45)

Now using triangular inequality, we get

d(t, St) ≤ b[d(t, Sak) + d(Sak, St)]

= bd(t, ak+1) + bd(Sak, St)
(4.46)

Letting k →∞ and using (4.37) and (4.45), we get

d(t, St) = 0 ⇒ t = St

Hence t is fixed point of S.

Uniqueness:

Let us consider a∗, b∗ ∈ X be two different fixed points of S i.e., a∗ 6= b∗ then

Sa∗ = a∗ 6= b∗ = Sb∗
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then,

d(a∗, b∗) > 0

So,

0 =
1

2b
d(a∗, Sa∗) < d(a∗, b∗)

According to the definition of F -Suzuki contraction, we get

F (d(a∗, b∗)) = F (d(Sa∗, Sb∗))

< µ+ F (d(Sa∗, Sb∗))

≤ F (d(a∗, b∗))

(4.47)

Which is contradiction, so our supposition of two fixed point is wrong.

Hence the uniqueness of fixed point of S is proved.

Now we discuss the fixed point theorem of generalized F -Suzuki type contraction

mapped on complete b-metric space.

Firstly definition of generalized F -Suzuki type contraction is as follows.

Definition 4.2.2.

“Let (X, d) ba a b-metric space with constant s ≥ 1. A mapping T : X → X is

said to be a generalized F -Suzuki type contraction if there exist τ > 0 such that

for all a, b ∈ X with Ta 6= Tb

1

2s
d(Ta, Tb) < d(a, b)

⇒ τ + F (d(Ta, Tb))

≤ λF (d(a, b)) + µF (d(a, Ta)) + νF (d(b, Tb))

(4.48)

Where ν ∈ [0, 1) and λ, µ ∈ [0, 1] are real numbers with λ + µ + ν = 1 and

F : R+ → R is a mapping satisfying the following conditions :

F-1 F is strictly increasing that is ∀ a, b ∈ R+ such that a < b , F (a) < F (b)

F-2 For each sequence {αk}∞k=1 of positive numbers, limk→∞ αk = 0 if and only

if limF (αk) = −∞”

Theorem 4.2.3.

Let S : X → X be generalized F -Suzuki contraction on a complete b-metric space

(X, d). Then S has a unique fixed point and the sequence {Sa0}∞k=1 converge to a

point a∗.
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Proof.

Let us consider a point a0 ∈ X and take a sequence {ak}∞k=1 as

a1 = Sa0, a2 = Sa1 = S2a0, .... ak+1 = Sak = Sk+1a0, ∀ k ∈ N (4.49)

If there exist k ∈ N for which d(ak, Sak) = 0, then there is nothing to prove.

We assume that,

0 < d(ak, Sak), ∀ k ∈ N (4.50)

Therefore,
1

2s
d(an, Sak) < d(ak, Sak) ∀ k ∈ N (4.51)

As F is generalized Suzuki type contraction, then we have

τ + F (d(Sak, S
2ak)) ≤ λF (d(ak, Sak)) + µF (d(ak, Sak))

+ νF (d(Sak, S
2ak))

τ + (1− ν)F (d(Sak, S
2ak)) ≤ (λ+ µ)F (d(ak, Sak))

(4.52)

Since λ+ µ+ ν = 1, then (4.52) takes the form

F (d(Sak, S
2ak)) ≤ F (d(ak, Sak))−

τ

λ+ µ

≤ F (d(ak, Sak))
(4.53)

As F is strictly increasing then we get

d(ak+1, Sak+1) = d(Sak, S
2ak) < d(ak, Sak) ∀ k ∈ N (4.54)

This implies {d(ak, Sak)}∞k=1 is decreasing sequence of real numbers bonded from

below. Then {d(ak, Sak)}∞k=1 converges to limit l

lim
k→∞

d(ak, Sak) = l = inf{d(ak, Sak) : k ∈ N} (4.55)

Now we have to show that l = 0. Assume that l > 0, then for every δ > 0 there

exist p ∈ N, such that

d(ap, Sap) < l + δ (4.56)

Using (F1), we get

F (d(ap, Sap)) < F (l + δ) (4.57)
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But we have,

1

2s
d(ap, Sap) < d(ap, Sap) (4.58)

As S is generalized F -Suzuki type contraction, then we get

τ + F (d(Sap, S
2ap)) ≤ λF (d(ap, Sap)) + µF (d(ap, Sap))

+ νF (d(Sap, S
2ap))

τ + (1− ν)F (d(Sap, S
2ap)) ≤ (λ+ µ)F (d(ap, Sap))

(4.59)

As λ+ µ+ ν = 1⇒ 1− ν = λ+ µ

F (d(Sap, S
2ap)) ≤ F (d(ap, Sap))−

τ

λ+ µ
(4.60)

Similarly,

τ + F (d(S2ap, S
3ap)) ≤ λF (d(Sap, S

2ap)) + µF (d(Sap, S
2ap))

+ νF (d(S2ap, S
3ap))

F (d(S2ap, S
3ap)) ≤ F (d(Sap, S

2ap))−
τ

λ+ µ

(4.61)

Combining (4.60) and (4.61) we get,

F (d(S2ap, S
3ap)) ≤ F (d(Sap, S

2ap))−
τ

λ+ µ

≤ F (d(ap, Sap))−
2τ

λ+ µ

(4.62)

Continuing this procedure, we obtain

F (d(Skap, S
k+1ap)) ≤ F (d(Skap, S

k−1ap))−
τ

λ+ µ

≤ F (d(Sk−1ap, S
k−2ap))−

2τ

λ+ µ
...

≤ F (d(Sap, ap))−
kτ

λ+ µ

< F (l + δ)− kτ

λ+ µ

(4.63)

Taking limk→∞, we get

lim
k→∞

F (d(Skap, S
k+1ap)) = −∞ (4.64)
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Using (F2), we get

lim
k→∞

d(Skap, S
k+1ap) = 0

Then there exist N1 ∈ N such that

d(Skap, S
k+1ap) < l, ∀ k ∈ N1 (4.65)

From sequence defined in (4.48), we get

d(ap+k, Sap+k) < l, ∀ k ∈ N1

Which is opposite to the definition of l.

Therefore,

lim
k→∞

d(ak, Sak) = 0 (4.66)

Now, we have to show that limk,p→∞ d(ak, ap) = 0

Oppositely, suppose that there exist δ > 0 and sequences of natural numbers

{b(k)}∞k=1 and {c(k)}∞k=1 such that

a(k) > b(k) > k, d(ab(k), ac(k)) ≥ δ, d(ab(k)−1, ac(k)) < δ, ∀ k ∈ N (4.67)

As X is b-metric space, then

d(ab(k), ac(k)) ≤ s[d(ab(k), ab(k)−1) + d(ab(k)−1, ac(k))]

< sd(ab(k), ab(k)−1) + sδ

= sd(ab(k)−1, Sab(k)−1) + sδ

(4.68)

As limk→∞ d(ak, Sak) = 0, then there exist N2 ∈ N such that

d(ab(k), Sab(k)) < δ, ∀ k > N2. (4.69)

Using (4.69), (4.68) takes the form

d(ab(k), ac(k)) < 2sδ ∀ k > N2 (4.70)

Using (F2), we get

F (d(ab(k), ac(k))) < F (2sδ) ∀ k > N2 (4.71)
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We can also get,

1

2s
d(ab(k), Sab(k)) <

δ

2s
< δ < d(ab(k), ac(k)) ∀ k > N2

So S is F -Suzuki type, then we have

τ + F (d(Sab(k), Sac(k))) ≤λF (d(ab(k), ac(k))) + µF (dab(k), Sab(k)))

+ νF (d(ac(k), Sac(k))) ∀ k > N2

(4.72)

Putting (4.71) in (4.72) we get,

τ + F (d(Sab(k), Sac(k))) ≤λF (2sδ) + µF (dab(k), Sab(k)))

+ νF (d(ac(k), Sac(k)))
(4.73)

Letting limk→∞ in (4.73) and using (4.66) we get,

lim
k→∞

F (d(Sab(k), Sac(k))) = −∞

From (F2) we get,

lim
k→∞

(d(Sab(k), Sac(k)) = 0⇔ lim
k→∞

(d(ab(k)+1, ac(k)+1) = 0

Which contradicts (4.67). Hence limk,p→∞ d(ak, ap) = 0 this implies that {ak}∞k=1

is a Cauchy sequence in X.

As (X, d) is complete, then there exist t ∈ X such that

lim
k→∞

d(ak, t) = 0 (4.74)

Now we claim that, for every k ∈ N we have,

1

2s
d(ak, Sak) < d(ak, t) ∀ k ∈ N

1

2s
d(Sak, S

2
k) < d(Sak, t) ∀ k ∈ N

(4.75)

On contrary suppose that, there is some p ∈ N which gives

1

2s
d(ap, Sap) ≥ d(ap, t)

or

1

2s
d(Sap, S

2
p) ≥ d(Sap, t)

(4.76)
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Using (F1) and (4.54) we get,

d(Sap, S
2
p) < d(ap, Sap) (4.77)

From (4.76) and (4.77), we get

d(ap, Sap) ≤ sd(ap, t) + sd(t, Sap)

≤ 1

2
d(ap, Sap) +

1

2
d(Sap, S

2
p)

<
1

2
d(ap, Sap) +

1

2
d(ap, Sap)

= d(ap, Sap)

(4.78)

Which contradicts our supposition. This implies (4.75) holds. As S is F -Suzuki

type contraction,then for every k ∈ N (4.75) gives,

τ + F (d(Sak, St)) ≤ λF (d(ak, t)) + µF (d(ak, Sak)) + νF (d(t, St)) (4.79)

or

τ + F (d(S2ak, St)) ≤ λF (d(Sak, t)) + µF (d(Sak, S
2ak)) + νF (d(t, St)) (4.80)

Applying (F2) on (4.66) and (4.74), we get

lim
k→∞

F (d(ak, t)) = −∞, lim
k→∞

F (d(ak, Sak)) = −∞ (4.81)

Taking limk→∞ in (4.79), we get

lim
k→∞

F (d(Sak, St)) = −∞ (4.82)

Applying (F2), we get

lim
k→∞

d(Sak, St)) = 0 (4.83)

Now using triangular inequality, we get

d(t, St) ≤ s[d(t, Sak) + d(Sak, St)]

= sd(t, ak+1) + sd(Sak, St)
(4.84)

Taking k →∞ in (4.84) and using (4.74) and (4.83) in it, we get

d(t, St) = 0 ⇒ t = St
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Hence t is fixed point of S.

Now, we discuss the second possibility of (4.79).

F (d(S2ak, St)) < τ + F (d(S2ak, St))

≤ λF (d(Sak, t)) + µF (d(Sak, S
2ak)) + νF (d(t, St))

= λF (d(ak+1, t)) + µF (d(ak+1, Sak+1)) + νF (d(t, St))

(4.85)

Using (4.66), we have

lim
k→∞

F (d(S2ak, St)) = −∞ (4.86)

Applying (F2), we have

lim
k→∞

d(S2ak, St) = 0 (4.87)

Using triangular inequality, we get

d(t, St) ≤ s[d(t, S2ak) + d(S2ak, St)]

= sd(t, ak+2) + sd(S2ak, St)
(4.88)

Taking k →∞ in (4.84) and using (4.74) and (4.83) we get

d(t, St) = 0 ⇒ t = St

Hence t is fixed point of S.

4.3 Conclusion:

We have reconsidered the ideas and concepts of F -contraction and b-

metric space introduced by Wardwoski [46] and Bakhtin [8] respectively. We have

extended some fixed point results on metric spaces. We extended these results in

the setting of b-metric space which is the generalized of a metric space. For these

extended results, we have introduced the notion of F -contraction and F -Suzuki

contraction for b-metric space and then established certain fixed point results for

such contraction. Our results generalized the results given in [33].

The results in this study may proved to be useful in solving different problems in

the complete b-metric spaces.
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